lunes, 2 de octubre de 2017

                                integrantes del equipo


-.Sebastian Jimenez Razo

-Jesus Emmanuel Cime Chale

-Naomi Duran Medina


-Xitlali Jetzemane Perez Paramo

                                    Tabla Periodica


La tabla periódica de los elementos es una disposición de los elementos químicos en forma de tabla, ordenados por su número atómico (número de protones), por su configuración de electrones y sus propiedades químicas. Este ordenamiento muestra tendencias periódicas, como elementos con comportamiento similar en la misma columna.
Resultado de imagen para tabla periodica elementos
Dmitri Mendeléyev publicó en 1869 la primera versión de tabla periódica que fue ampliamente reconocida. La desarrolló para ilustrar tendencias periódicas en las propiedades de los elementos entonces conocidos, al ordenar los elementos basándose en sus propiedades químicas,​ si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.​ Mendeléyev también pronosticó algunas propiedades de elementos entonces desconocidos que anticipó que ocuparían los lugares vacíos en su tabla. Posteriormente se demostró que la mayoría de sus predicciones eran correctas cuando se descubrieron los elementos en cuestión.
Resultado de imagen para tabla periodicaLa tabla periódica de Mendeléyev ha sido desde entonces ampliada y mejorada con el descubrimiento o síntesis de elementos nuevos y el desarrollo de modelos teóricos nuevos para explicar el comportamiento químico. La estructura actual fue diseñada por Alfred Werner a partir de la versión de Mendeléyev. Existen además otros arreglos periódicos de acuerdo a diferentes propiedades y según el uso que se le quiera dar (en didáctica, geología, etc).








                          Estados de la materia




Estado sólido
Resultado de imagen para estado solido
Los sólidos se caracterizan por tener forma y volumen constantes. Esto se debe a que las partículas que los forman están unidas por unas fuerzas de atracción grandes de modo que ocupan posiciones casi fijas.
En el estado sólido las partículas solamente pueden moverse vibrando u oscilando alrededor de posiciones fijas, pero no pueden moverse trasladándose libremente a lo largo del sólido.
Las partículas en el estado sólido propiamente dicho, se disponen de forma ordenada, con una regularidad espacial geométrica, que da lugar a diversa
estructuras cristalinas.
Al aumentar la temperatura aumenta la vibración de las partículas.

Estado líquido
Resultado de imagen para estado liquido

Los líquidos, al igual que los sólidos, tienen volumen constante. En los líquidos las partículas están unidas por unas fuerzas de atracción menores que en los sólidos, por esta razón las partículas de un líquido pueden trasladarse con libertad. El número de partículas por unidad de volumen es muy alto, por ello son muy frecuentes las colisiones y fricciones entre ellas.
Así se explica que los líquidos no tengan forma fija y adopten la forma del recipiente que los contiene. También se explican propiedades como la fluidez o la viscosidad.
En los líquidos el movimiento es desordenado, pero existen asociaciones de varias partículas que, como si fueran una, se mueven al unísono. Al aumentar la temperatura aumenta la movilidad de las partículas (su energía).


Estado gasesoso

Los gases, igual que los líquidos, no tienen forma fija pero, a diferencia de éstos, su volumen tampoco es fijo. También son fluidos, como los líquidos.
En los gases, las fuerzas que mantienen unidas las partículas son muy pequeñas. En un gas el número de partículas por unidad de volumen es también muy pequeño.
Las partículas se mueven de forma desordenada, con choques entre ellas y con las paredes del recipiente que los contiene. Esto explica las propiedades de expansibilidad y compresibilidad que presentan los gases: sus partículas se mueven libremente, de modo que ocupan todo el espacio disponible. La compresibilidad tiene un límite, si se reduce mucho el volumen en que se encuentra confinado un gas éste pasará a estado líquido.
Al aumentar la temperatura las partículas se mueven más deprisa y chocan con más energía contra las paredes del recipiente, por lo que aumenta la presión.
Resultado de imagen para estado gaseoso

                      Métodos de separación de mezclas


SEPARACIÓN MAGNÉTICA

Habrás pensado que la forma más rápida y efectiva de separar el hierro del aluminio es recurrir a un imán (si no tuvieras ninguno podrías improvisarlo, ya que muchos cierres de bolsos y tapas de carcasas protectoras de móvil son imanes). Puesto que el hierro es atraído por el imán pero el aluminio no, habrás solucionado el problema de una manera sencilla.
El método empleado en este caso para separar los componentes de tu mezcla heterogénea recibe el nombre de separación magnética. Solo puede emplearse si uno de ellos presenta propiedades magnéticas (como el hierro) y el resto no.
image

DECANTACIÓn :

image

Se emplea para separar líquidos con densidades diferentes y que no se mezclan entre sí (inmiscibles), como el agua y el aceite. En estos casos, se utiliza un embudo de decantación.

FILTRACIÓN

image
Este método se usa para separar un sólido de un líquido en el cual no se disuelve (no es soluble en él), como la arena en suspensión en el agua. Para ello, se hace pasar la mezcla heterogénea a través de un filtro con un tamaño de poro adecuado (menor que el de las partículas que queremos separar). Habitualmente se emplea un papel de filtro acoplado a un embudo.

EVAPORACIÓN Y CRISTALIZACIÓN

image

Se emplea para separar un soluto sólido disuelto en un disolvente líquido, como la sal en el agua. El proceso comienza con la evaporación del disolvente (natural o forzada mediante calefacción) y acaba con la deposición en el fondo del recipiente (generalmente, un cristalizador) del sólido en forma de cristales. Cuanto más lenta sea la evaporación del disolvente, más grandes serán los cristales.

                             Configuración electrónica


Vamos a estudiar la configuración electrónica o también llamada distribución electrónica. Abajo del todo tienes una tabla con la configuración electrónica de todos los elementos, pero aqui vamos a explicarte como se hace.

 Primero te vamos a explicar todo de forma sencilla para que lo entiendas. Luego te enseñaremos una regla muy sencilla para obtener la configuración electrónica de cualquier elemento, pero es bueno que intentes entender el cómo y el por qué. Por eso empezaremos por el principio para que nos resulte fácil.

Resultado de imagen para configuracion electronica Recuerda que lo átomos tienen un núcleo donde se encuentran los protones y los neutrones, pero alrededor del núcleo están los electrones girando en las llamadas órbitas. Un átomo puede tener varias órbitas alrededor de su núcleo y sobre las cuales están girando sus electrones.

La Configuración o Distribución electrónica nos dice como están ordenados los electrones en los distintos niveles de energía (órbitas), o lo que es lo mismo como están distribuidos los electrones alrededor del núcleo de su átomo.

Resultado de imagen para configuracion electronica
 ¿Cómo saber los electrones que tienen los átomos en cada una de sus órbita? Pues bien, eso es lo que se llama la configuración electrónica de un elemento de la tabla periódica. Poco a poco lo iremos aprendiendo.

 ¿Para que queremos saber esto?. Por ejemplo, es muy útil  o mejor dicho imprescindible para hacer el enlace covalente y los enlaces iónicos y conocer los llamados electrones de valencia, que son el número de electrones que tiene el átomo de un elemento en su última capa u órbita (subnivel).


               mezclas quimicas (homogeneas y heterogeneas)


¿Qué es una Mezcla?

Una mezcla es una sustancia que está formada por varios componentes (dos o más), que no pierden sus propiedades y características por el hecho de mezclarse ya que no se produce una reacción química entre ellos. ejemplos de mezclas pueden ser una ensalada, agua salada (agua y sal), azúcar y sal, etc.
Resultado de imagen para mezclas


 Tenemos dos tipos de mezclas diferentes.

 - Homogéneo : Cuando todos los elementos que forman una agrupación son iguales (una manada de cebras serán todas iguales). No se diferencian unos de otros. En químicacuando una sustancia tiene una composición uniforme.

 *Recuerda, Sustancia = Material constituido por un solo componente y con las mismas propiedades en todas sus partes,. Por ejemplo hierro puro, si todo el material son átomos de hierro, será una sustancia, sustancia pura.
Resultado de imagen para mezclas homogeneas

 - Heterogéneo : Agrupación de elementos desiguales, se pueden diferenciar. En químicaaquel material en el que se pueden diferenciar las fases o partes que la componen (varias sustancias o componentes).

 Bien ahora que ya tenemos claro las definiciones pasamos a explicar las mezclas homogéneas y heterogéneas. Lo primero de todo saber que es una mezcla 
Resultado de imagen para mezclas heterogeneas 

A continuacion un video acerca del tema: